Operator From EPC Standard

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Short Description

Operator is a subclass of process element. An operator determines the process's behavior in case its control-flow is split up into or joined from several execution branches. For each subtype exists a Splitand a Join-Operator. The split can either represent an exclusive or non exclusive choice between different alternative branches, or a parallel execution of several process branches. The join merges the split up control flow considering the logic used in the split. As a result, the join operator needs to be of the same type as the logical operator that initially split the control flow. [1]

Following that logic there are three different subtypes of the operator process element:

XOR Operator: Exclusive choice OR Operator: Nonexclusive choice AND Operator: Parallel Execution

Operators can also be altered by assigning 0 to n attributes to it.

Semantic Representation

In the following an operator is called connector.

A connector C is a finite and pairwise disjoint set. It is a part of an EPC = (E, F, P, V, I, A) and is represented in the mapping I: C \rightarrow {and, xor, or}.

A connector is also defined as a node, as it is part of the union $N = E \cup F \cup P \cup C.[2]$ Following subsets are defined:

• J = {c \in C | |•c| > 1 and |c•| = 1} as the set of join connectors, S= {c \in C | |•c| = 1 and |c•| > 1} as the set of split-connectors.[3][4]

Following requirements are made on connectors so an EPC can be called relaxed syntactically correct:

- There are no connector cycles, i.e. $\forall a, b \in C$: if $a \neq b$ and $a \rightarrow c \rightarrow b$, then $b \rightarrow c \rightarrow a$ does not exit.
- Connectors have one incoming and multiple outgoing arcs or multiple incoming and one outgoing arc. $\forall c \in C : (| \cdot c| = 1 \land |c \cdot | > 1) \lor (| \cdot c| > 1 \land |c \cdot | = 1).$
- Connectors must have either <u>functions</u>, <u>process interfaces</u>, or fe-connectors in the preset and <u>events</u> or fe-connectors in the postset;

or events or ef-connectors in the preset and functions, process interfaces, or ef-connectors in the postset:

 $\forall c \in C: (\bullet c \subseteq (F \cup P \cup CFE))$

$\land c \bullet \subseteq (E \cup CFE) \lor (\bullet c \subseteq (E \cup CEF)$ $\land (c \bullet \subseteq (F \cup P \cup CEF)).[5]$

• After an event, no xor/or connector is allowed.[6]

References

- [*1] M. Fellmann, S. Bittmann, A. Karhof, C. Stolze, and O. Thomas, "Do We Need a Standard for EPC Modelling? The State of Syntactic, Semantic and Pragmatic Quality," in 5th International Workshop on Enterprise Modelling and Information Systems Architectures (EMISA), 2013, pp. 103–116.
- [*2] Ekkart Kindler "On the semantics of EPCs: resolving the vicious circle", Data & Knowledge Engineering - Special issue: Business process management archive Volume 56 Issue 1, 2006, p. 28.
- [*3] Van der Aalst, "Formalization and verification of event-driven process chains" Information and Software Technology 41, 1999, pp. 639-650
- [*4] Mendling: Event Driven Process Chains Metrics for Process Models, Volume 6 of the series Lecture Notes in Business Information Processing, 2009, pp. 17-57.
- [*5] K. van Hee, O. Oanea, N. Sidorova, "Colored Petri Nets to Verify Extended Event-Driven Process Chains", OTM Confederated International Conferences "On the Move to Meaningful Internet Systems", 2005, pp. 183-201.
- [*6] M. Nüttgens, F. J. Rump "Syntax und Semantik Ereignisgesteuerter Prozessketten", Prozessorientierte Methoden und Werkzeuge für die Entwicklung von Informationssystemen, Proceedings des GI-Workshops und Fachgruppentreffens, 2002, pp. 65-77.

<u>Category</u>: <u>Meta Model</u>

This page was last edited on 15 January 2021, at 14:22. Content is available under <u>Creative Commons "Zero" (Gemeinfreiheit)</u> unless otherwise noted. <u>Privacy policy</u> <u>About EPC Standard</u> <u>Disclaimers</u>

Powered by MediaWiki